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DETECTION OF SOIL PROPERTIES WITH AIRBORNE

HYPERSPECTRAL MEASUREMENTS OF BARE FIELDS

W. R. DeTar,  J. H. Chesson,  J. V. Penner,  J. C. Ojala

ABSTRACT. Remote sensing with aircraft‐based sensors can provide the fine resolution required for site‐specific farming. The
within‐field spatial distribution of some soil properties was found by using multiple linear regression to select the best
combinations of wave bands, taken from among a full set of 60 narrow bands in the wavelength range of 429 to 1010 nm. The
resulting regression equations made it possible to calculate the value of the soil property at every pixel, with a spatial
resolution of 1.2 m. Both surface and subsurface samples of soil were taken from the center of each of 321 equal‐sized grids
on 128 ha of recently seeded and nearly bare soil. The soil samples were tested in a laboratory for 15 different properties.
The percent sand in surface samples was found to be detectable with a reasonable degree of accuracy with R2 = 0.806 for
a four‐parameter model; the best combination of wavelengths was 627, 647, 724, and 840 nm. For silt, clay, chlorides,
electrical conductivity, and phosphorous, the results were somewhat less satisfactory with a range of 0.66 < R2 < 0.76. The
poorest fit was for carbon with R2 = 0.27. Organic matter and saturation percentage had R2 < 0.49. For the remaining
properties, i.e., pH, Ca, Mg, Na, K, and bicarbonates, the correlation was intermediate and statistically significant, but with
a great deal of scatter around the regression lines. An example of an image map was produced showing the percent sand at
every pixel location in one field. New spectral indices were developed; one index (I = R763 - 0.85*R753 - 0.24*R657 -
0.40*R443) was found to work well with five of the soil properties (EC, Ca, Mg, Na, and Cl), indicating some commonality
in the manner in which they affected the reflectance from the soil surface, possibly due to a salinity effect. Multiple linear
regressions were also run on every possible combination of four broader bands in the blue, green, red, and near‐infrared
regions of the spectrum, resulting in R2 values lower than with the various combinations of narrow bands. The main findings
were that (1) some soil properties can be accurately detected using airborne remote sensing over nearly bare fields, and (2)�it
is possible to produce a fine‐resolution, farm‐size, soils map showing the in‐field distribution of these properties.

Keywords. Band selection, Bare fields, Hyperspectral imagery, Multiple linear regression, Precision agriculture, Remote
sensing, Soils map, Soil properties, Spectral indices.

ite‐specific crop management requires soil property
data with fine spatial resolution. Remote sensing in
the form of hyperspectral imagery (HSI) on an air‐
craft platform can provide the necessary resolution,

and in addition it supplies a complete spectrum of data for ev‐
ery pixel location. This combination creates a potential for
accurate detection of soil properties. Recent studies have
shown the usefulness of spectral indices developed from HSI
data to characterize biophysical properties in agriculture
(Haboudane et al., 2002; Goel et al., 2003). Haboudane et al.
(2002) combined a radiative simulation model with HSI data
to generate predictive equations that worked quite well for
chlorophyll. Goel et al. (2003) used multiple linear regres‐
sion of HSI reflectance data to find the best combination of
narrow wave bands for detecting nine different properties of
a corn crop. They found that some modified forms of the
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normalized difference vegetation index (NDVI) performed
better than five‐term linear regression models.

Thomasson et al. (2001) used spectrophotometer readings
of soil samples to measure nine soil properties, including pH,
Ca, Mg, Zn, Na, P, K, sand, and clay. The best responses were
with Ca and Mg for soil from one field where the R2 values
were 0.72 and 0.73, respectively. Palacios‐Orueta and Ustin
(1998), using remote‐sensing reflectance data, found that Fe,
organic matter, and sand were the main factors affecting the
spectral response curves. Low reflectance was noted in soils
with low sand content. Barnes and Baker (1999) found that
aerial and satellite images could be used to map soil texture
in individual fields with a reasonable degree of accuracy.
Barnes et al. (1996) suggested that spectral reflectance data
could be used to improve the interpolation of gridded soil
samples. Chen et al. (2000) used two different approaches for
remote sensing of a large bare field to detect soil organic car‐
bon. In one method, using red, green, and blue bands, a re‐
gression equation with R2 = 0.93 was used to calculate values
at every pixel. The resulting distribution agreed well with a
classification approach.

Hong et al. (2002) attempted to measure the within‐field
variation of seven soil properties (Mg, K, P, pH, cation ex‐
change capacity, organic matter, and apparent electrical con‐
ductivity) using airborne hyperspectral images on 35 ha of
bare soil. They applied both stepwise multiple regression and
principal component regression (PCR) on the full HSI data

S



464 TRANSACTIONS OF THE ASABE

set and also used multiple regression on four broad band
ranges of HSI data corresponding to Landsat TM bands 1‐4.
Although stepwise multiple regression on the full HSI data
set gave good results, the inclusion of many variables in‐
creased the chance of overfitting. The results with the PCR
and the Landsat‐like bands were generally almost as good
and showed potential for estimating the distribution of soil
properties with less chance of overfitting.

Selige et al. (2003) used airborne HSI over two bare fields.
Using single‐band regression on each of 128 narrow bands,
a very good non‐linear correlation was found for clay content
using the wave band in the range of 2427‐2436 nm, with R2�=
0.78. The best band for organic matter was found at 344‐
357�nm, with R2 = 0.68. Selige et al. (2006) used airborne HSI
over 12 bare fields with a total area of 700 ha at a spatial reso‐
lution of 6 m. There were 128 bands in the range of 420‐2480
nm. After first removing some bands using partial least‐
square regression (PLSR), they used multiple linear regres‐
sion of the remaining bands to find the best bands and
predictive equations for four soil properties: nitrogen, organ‐
ic carbon, sand, and clay. In this case, the best four bands for
clay were in the range of 902‐1165 nm with R2 = 0.65. The
best four bands for organic matter were in the range of
800‐1322 nm with R2 = 0.86, and for sand they were all great‐
er than 2200 nm with R2 = 0.87. Bajwa and Tian (2005) used
PLSR analysis to relate several fertility‐related soil proper‐
ties to airborne HSI data from four bare fields. The spectral
range was 471‐828 nm. The R2 for Ca and Mg were 0.82 and
0.72, respectively.

The current study shows the degree to which 15 soil prop‐
erties can be detected with airborne HSI data taken over
large, essentially bare fields, using a multiple linear regres‐
sion procedure for band selection where every possible com‐
bination of 60 narrow bands (429 to 1010 nm) is regressed in
two‐, three‐, and four‐parameter equations. The ultimate ob‐
jective is to accurately show the in‐field distribution of soil
properties.

MATERIALS AND METHODS
STUDY AREA AND SOIL SAMPLING

The study site included two fields of a large commercial
farm on the western side of the San Joaquin Valley of Califor‐
nia, in Kings County, near the town of Stratford. The center
of one field, called 4‐1, was located at 36.222° N and
119.918° W; the field had an area of 72 ha with an average
elevation of 71 m. The center of the other field, called 6‐4,
was located at 36.214° N and 119.954° W; the field had an
area of 63 ha with an elevation of 76 m. Both fields were near‐
ly square in shape. Acala cotton was planted in mid‐April,
and the plants had reached about 5% canopy cover by mid‐
May. The soil in both fields was classified as Lethent silty
clay loam, slight to strong alkali (fine, smectitic, thermic
Typic Natrargids). The parent material was sedimentary rock
alluvium. It was a deep, poorly drained soil on nearly level
land. For the area in general, perched groundwater over deep
clay layers transported salts from the higher regions to the
lower fans, basin, and basin rims, imposing the need of drain‐
age management (USDA, 1978).

Soil samples were collected in April 2002 from 173 loca‐
tions in field 4‐1 and from 148 locations in field 6‐4. The
location of each sample site was set by global positioning sys‐

tem (GPS) coordinates as the center of a 0.4 ha polygon grid
area. Two samples were taken at each of the 321 sites, one
scraped from the soil surface and the other a combination of
8 subsamples taken with a 19 mm diameter soil probe to a
depth of 300 mm at random points within 3 m of the center
of the sample site. Each sample weighed about 1700 g. Sam‐
ple preparation consisted of air‐drying in a laboratory and
then grinding until the entire sample passed a 2 mm sieve.
There was no tillage of the soil between the time of the sam‐
pling and time of the flight, and the soil surface was dry at
both times. It is assumed that other differences were minor.

LABORATORY ANALYSIS OF SOIL SAMPLES
Half of each sample was sent for analysis to the Agricul‐

ture and Natural Resources Analytical soils laboratory at the
University of California in Davis, California. Starting with a
vacuum extraction of a saturated paste, the first property
measured was saturation percentage (SP). Soil pH was deter‐
mined directly on the saturation paste using an electrode
probe; from the extract, estimates were made of electrical
conductivity (EC), Ca, Mg, Na, Cl, and HCO3. Carbon (C)
was determined by flash combustion coupled with a gas chro‐
matograph separation system. Extractable phosphorus (P)
was determined by the Olsen method, and exchangeable po‐
tassium (K) was determined by extraction with sulfuric acid.
Organic matter (OM) was measured by sample ignition. Par‐
ticle size (sand, silt, and clay) was measured by the hydrome‐
ter method.

HYPERSPECTRAL DATA ACQUISITION

The Airborne Visible and Near‐Infrared (AVNIR) hyper‐
spectral sensor (OKSI, Inc., Torrance, Cal.) was flown over
the site on 22 May 2002. The AVNIR images, acquired at
2200 m above ground level, produced 1.2 m spatial resolution
with 60 bands, covering the spectral range from 429 to
1010�nm with a 10 nm bandwidth. The wavelength for the
center of each band is shown in table 1. As with Landsat
bands, it was found to be more convenient to refer to the
bands by number, rather than by wavelength, and this con‐
vention is used throughout the rest of this article. Atmospher‐
ic calibration was performed using black and gray, 8 × 8 m
reference panels located near the fields. Images were georef‐
erenced and registered using small white panels located at the
corners of the fields. Spectral radiometer readings of the cal‐
ibration panels were taken using a model LI‐1800 from LI‐
COR, Inc. (Lincoln, Neb.).

DATA ANALYSIS

Image processing and initial statistical analysis were con‐
ducted using ENVI 4.1 software (Research Systems, Inc.,
Boulder, Colo.). The points representing the location of the
soil sample sites were superimposed on the HSI images of
each field. A circular area, made large enough to include
150�pixels (about a 7.6 m radius), was selected at each sample
site, and the average reflectance for each of the 60 bands was
exported as an ASCII file for further processing. Microsoft
Excel was then used to convert these files to a format useable
by CoPlot v3.0 (CoHort Software, Monterey, Cal.) and by
ArcView GIS v3.3 (ESRI, Redlands, Cal.). The master proc‐
essing file in Excel contained 321 rows of data, one for each
sampling site, and 60 columns, one for each band. Soil prop‐
erty data were added one at a time in column 61, and this file
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Table 1. Wavelengths and corresponding band numbers used in the hyperspectral analysis.
Wavelength

(nm)
Band
No.

Wavelength
(nm)

Band
No.

Wavelength
(nm)

Band
No.

Wavelength
(nm)

Band
No.

1005.11 B1 859.86 B16 714.61 B31 569.36 B46
995.43 B2 850.18 B17 704.93 B32 559.68 B47
985.75 B3 840.49 B18 695.24 B33 549.99 B48
976.06 B4 830.81 B19 685.56 B34 540.31 B49
966.38 B5 821.13 B20 675.88 B35 530.63 B50
956.70 B6 811.44 B21 666.19 B36 520.94 B51
947.01 B7 801.76 B22 656.51 B37 511.26 B52
937.33 B8 792.08 B23 646.83 B38 501.58 B53
927.65 B9 782.39 B24 637.14 B39 491.89 B54
917.96 B10 772.71 B25 627.46 B40 482.21 B55
908.28 B11 763.03 B26 617.78 B41 472.53 B56
898.60 B12 753.34 B27 608.09 B42 462.84 B57
888.91 B13 743.66 B28 598.41 B43 453.16 B58
879.23 B14 733.98 B29 588.73 B44 443.48 B59
869.55 B15 724.29 B30 579.04 B45 433.79 B60

became the primary source for multiple linear regression
analysis, which was performed using the CoPlot software.

MULTIPLE LINEAR REGRESSION
The soil property was considered the dependent variable,

and the various band reflectances were the independent vari‐
ables. There is an automatic procedure available in CoPlot,
in which, after a choice of the number of bands to include in
each multiple regression is made, the program looks at every
possible combination, returning only the R2 values. The num‐
ber of regressions required for pairs of bands out of 60 avail‐
able is 1770. To find the best three‐band combinations
required 34,220 regressions. Four‐band combinations re‐
quired 487,635 regressions. The program automatically
ranks and stores the results of the 100 best combinations
(models).

IMAGE MAP

The entire HSI image for each field was converted to
ASCII format and loaded into Microsoft Access; there were
nearly 500,000 rows and 62 columns (60 columns for reflec‐
tance plus two more for longitude and latitude) of data. Using
the bands and equations developed with the multiple linear
regression, queries were formed to calculate the predicted
value of a soil property at each pixel. These values along with

their coordinates were then loaded into ArcView for color
selection. The final step for the image map was to convert it
to a TIFF format.

RESULTS AND DISCUSSION
BAND SELECTION AND SPECTRAL INDICES

The coefficient of determination (R2) obtained between
the various soil properties and the multi‐parameter spectral
reflectance models are shown in table 2 for the samples taken
from the soil surface. Table 3 shows the same type of data us‐
ing the subsurface samples. It is clear that some of the proper‐
ties correlate quite well, especially sand, which had an R2 >
0.80 for both surface and subsurface samples using the four‐
parameter model. In comparing tables 2 and 3, one notes that
for sand, the best models contain almost the same bands for
both the surface and subsurface samples. For the other prop‐
erties, however, the correlation is much better with the sur‐
face samples. In addition, the surface and subsurface tests do
not share many of the same bands. For surface samples of silt,
clay, chlorides, EC, and P, the results were a little less satis‐
factory than with sand, with 0.66 < R2 < 0.76 using four‐
parameter models. The poorest fit was for carbon, with R2 =
0.27. OM and SP had R2 < 0.49. For the remaining properties,
i.e., pH, Ca, Mg, Na, K, and bicarbonates, the correlation was

Table 2. Bands for the highest R2 values for surface properties of soil.

Soil
Property

One Parameter Two Parameters Three Parameters Four Parameters

Band R2 Bands R2 Bands R2 Bands R2

SP (%) B10 0.3978 B4, B30 0.4109 B30, B50, B53 0.4518 B4, B33, B36, B59 0.4859
pH B3 0.5474 B2, B56 0.5710 B23, B30, B33 0.5900 B3, B7, B13, B26 0.6164

EC (dS m‐1) B52 0.4633 B57, B58 0.5441 B26, B27, B54 0.6359 B26, B27, B38, B59 0.6693
Ca (meq L‐1) B52 0.4325 B57, B58 0.5167 B26, B27, B57 0.5918 B26, B27, B38, B60 0.6188
Mg (meq L‐1) B55 0.3761 B51, B52 0.4508 B26, B27, B57 0.5433 B26, B27, B38, B60 0.5820
Na (meq L‐1) B52 0.3428 B51, B52 0.4478 B26, B27, B54 0.5850 B26, B27, B38, B59 0.6224
Cl (meq L‐1) B52 0.6026 B57, B59 0.6613 B26, B27, B54 0.7249 B26, B27, B37, B59 0.7376

HCO3 (meq L‐1) B21 0.3189 B39, B47 0.4019 B27, B30, B47 0.5183 B27, B30, B48, B53 0.5668
C (%) B9 0.0245 B44, B50 0.1912 B26, B47, B50 0.2527 B32, B44, B47, B50 0.2692

P (mg kg‐1) B22 0.4452 B39, B46 0.5138 B38, B48, B55 0.6540 B27, B30, B50, B53 0.6975
K (mg kg‐1) B21 0.3729 B57, B59 0.4820 B27, B29, B47 0.5897 B14, B27, B30, B47 0.6391

OM (%) B27 0.2617 B47, B50 0.3517 B26, B27, B47 0.4384 B26, B27, B47, B50 0.4857
Sand (%) B13 0.7623 B2, B38 0.7865 B2, B4, B7 0.7965 B18, B30, B38, B40 0.8063
Silt (%) B18 0.6878 B2, B7 0.7187 B27, B30, B45 0.7326 B2, B6, B39, B45 0.7518

Clay (%) B4 0.5699 B4, B35 0.6016 B4, B35, B44 0.6516 B13, B29, B36, B44 0.6708
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Table 3. Bands for the highest R2 values for subsurface properties of soil.

Soil
Property

One Parameter Two Parameters Three Parameters Four Parameters

Band R2 Bands R2 Bands R2 Bands R2

SP (%) B10 0.3873 B10, B38 0.4073 B9, B34, B36 0.4413 B4, B9, B32, B38 0.4703
pH B59 0.1660 B4, B20 0.2320 B12, B31, B32 0.2557 B12, B31, B32, B47 0.2784

EC (dS m‐1) B57 0.0100 B50, B52 0.1873 B10, B14, B55 0.2937 B8, B14, B27, B59 0.3375
Ca (meq L‐1) B37 0.0333 B33, B36 0.1105 B21, B32, B37 0.2240 B21, B31, B32, B37 0.2640
Mg (meq L‐1) B17 0.0311 B50, B52 0.1675 B21, B32, B37 0.2741 B21, B31, B32, B37 0.3089
Na (meq L‐1) B26 0.0373 B50, B52 0.2048 B11, B14, B55 0.3445 B15, B26, B27, B60 0.4281
Cl (meq L‐1) B57 0.2515 B51, B52 0.3043 B26 B27, B58 0.3834 B9, B27, B31, B43 0.4359

HCO3 (meq L‐1) B57 0.0999 B33, B44 0.1606 B33, B44, B51 0.1961 B9, B31, B47, B52 0.2029
C (%) B38 0.0075 B44, B50 0.1909 B44, B50, B55 0.2737 B33, B44, B50, B55 0.3078

P (mg kg‐1) B47 0.3158 B9, B21 0.4142 B38, B50, B55 0.4921 B26, B30, B48, B58 0.5482
K (mg kg‐1) B21 0.3490 B50, B59 0.4363 B38, B47, B59 0.5077 B6, B21, B26, B47 0.5591

OM (%) B34 0.2361 B14, B31 0.3217 B26, B47, B50 0.3995 B23, B27, B47, B50 0.4360
Sand (%) B13 0.7682 B2, B38 0.7938 B2, B4, B7 0.8012 B18, B30, B38, B39 0.8148
Silt (%) B18 0.6782 B2, B7 0.7012 B27, B30, B46 0.7168 B1, B35, B45, B60 0.7308

Clay (%) B33 0.6162 B4, B35 0.6492 B4, B35, B44 0.6927 B3, B35, B44, B55 0.7111

intermediate  and statistically significant, but with a great
deal of scatter around the regression lines. Increasing the
number of parameters in the model from two to three im‐
proved the correlation greatly for some soil properties (P and
Na) and hardly at all for others (pH, sand, and silt). Going
from three parameters to four parameters usually did not im‐
prove the R2 very much.

For each of the top‐ranked band combinations shown in
tables 2 and 3, there are 99 more of lower rank stored by the
CoPlot program. In some cases, the lower‐ranked models
have nearly the same R2 as the top‐ranked model. For exam‐
ple, with the four‐parameter model for surface sand, the R2

declines from 0.8063 for the top model to 0.7989 for the mod‐
el ranked number 100. Thus, the top model is definitely not
a unique answer. As suggested by Lillesand and Kiefer
(1999), a unique solution would only be possible under ideal
conditions.

There are certain bands that appear frequently in the top
100 models for surface sand. For example, B38 appears in 43
of the 100 top four‐parameter models, and B29 appears
39�times. Forty‐two of the top 50 two‐parameter models for
surface sand include the combination of either B1 or B2 with
any band in the range of B32 to B52. It is evident in tables 2
and 3 that the wavelength found for the best single‐parameter
model often does not appear at all in any of the best multi‐
parameter models. In the best three‐parameter models for
surface soil, the same three bands (B26, B27, and B54) ap‐
pear for three different soil properties (EC, Na, and Cl). The
combination of these bands also appears in the top two rank‐
ings of five surface soil properties (EC, Ca, Mg, Na, and Cl),
and the combination of bands B26, B27, and B57 do likewise.
In fact, for these same five soil properties, bands B26 and B27
work well in combination with any band between B52 and
B58. For the four‐parameter surface soils models, the com‐
bination of bands B26, B27, B37, and B59 are in the top three
rankings for the same five surface soil properties (EC, Ca,
Mg, Na, and Cl). It is clear that all five of these properties af‐
fected the character of the soil surface in a similar manner,
and consequently produced some similarity in the spectral re‐
sponse patterns. All could be indicators of salinity. Selige et
al. (2006) found that the best bands for their four properties
(organic carbon, nitrogen, sand, and clay) did not coincide
with any of the bands above, reinforcing the idea that separate
models are needed for each field, as mentioned by Thomas‐

son et al. (2001). Bajwa and Tian (2005), using PLSR on the
first derivative, found that bands near our B27, B36, B37, and
B40 were important in many of the models for the eight prop‐
erties they tested, but they did not say which bands were best
for each property.

Table 4 shows how the best combinations of bands can
vary in the top 20 models for surface sand. Here one can see
that the R2 value declines faster in the lower rankings of the
single‐parameter  models than in the multi‐parameter models.
The best four‐parameter regression equation for each surface
soil property is in shown in table 5. The factor in parentheses
is the spectral index. Table 6 shows the similarity in the four‐
parameter spectral indices for EC, Ca, Mg, Na, and Cl. The
average spectral index (I = R26 - 0.855*R27 - 0.241*R37 -
0.400*R59) was determined by simply averaging the coeffi‐
cients.

Figure 1 is a scatter diagram showing how well the percent
sand in the soil surface is correlated to its four‐parameter
spectral index, from model 13 in table 5. As seen in figure 2,
the scatter is also low around the regression line for percent
silt in the surface soil versus the spectral index from mod‐
el�14. The third best correlation is shown in figure 3, where
the scatter for chlorides, model 7, is lower for Cl < 60 meq
L-1. Figure 4 shows a fairly good correlation for EC, from
model 3. It is clear that there is less scatter in figures 1 and
2 than in figures 3 and 4, especially at the higher values of the
soil property. Examples of spectral response patterns are
shown in figures 5 and 6. The higher potassium levels tended
to be associated with a somewhat higher reflectance over al‐
most the entire spectrum. The slight undulation in the differ‐
ence curve at about 750 nm might explain the appearance of
band B27 in the three‐ and four‐parameter models for potas‐
sium. For sand, there was a large difference in reflectance
over the entire spectrum, with the higher sand levels causing
higher reflectance, as noted by Palacios‐Orueta and Ustin
(1998). The greatest difference was in the range of 950‐
1000�nm, perhaps explaining why the best three‐parameter
models included bands B2, B4, and B7.

Four broader bands (blue, green, red, and NIR) were used
in a multiple linear regression analysis of the 15 surface soil
properties, and the results are shown in table 7. The exact
wavelengths used for each band are given in the table caption.
Sand was found again to be the easiest property to detect. Us‐
ing red and NIR produced an R2 of 0.77. Adding one or two
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Table 4. Bands for the 20 highest R2 values for percent sand in surface soil.

Rank

One Parameter Two Parameters Three Parameters Four Parameters

Band R2 Bands R2 Bands R2 Bands R2

1 B13 0.7623 B2, B38 0.7865 B2, B4, B7 0.7965 B18, B30, B38, B40 0.8063
2 B3 0.7610 B2, B37 0.7842 B2, B3, B7 0.7933 B14, B27, B29, B38 0.8056
3 B31 0.7516 B2, B36 0.7840 B2, B7, B36 0.7932 B18, B30, B38, B39 0.8053
4 B14 0.7493 B2, B35 0.7827 B2, B7, B42 0.7931 B13, B27, B29, B38 0.8050
5 B12 0.7386 B2, B42 0.7826 B2, B7, B38 0.7928 B14, B26, B38, B60 0.8045
6 B2 0.7380 B2, B34 0.7823 B2, B7, B37 0.7927 B14, B29, B38, B60 0.8043
7 B1 0.7318 B1, B42 0.7823 B2, B7, B54 0.7927 B14, B30, B38, B60 0.8041
8 B18 0.7315 B1, B45 0.7817 B2, B7, B45 0.7926 B18, B30, B38, B41 0.8041
9 B10 0.7303 B2, B32 0.7816 B2, B7, B58 0.7926 B13, B23, B29, B38 0.8039

10 B22 0.7270 B1, B36 0.7815 B2, B7, B40 0.7925 B2, B25, B29, B38 0.8037
11 B4 0.7265 B2, B33 0.7815 B2, B7, B53 0.7923 B10, B25, B29, B38 0.8036
12 B32 0.7240 B1, B34 0.7813 B2, B7, B43 0.7923 B12, B25, B29, B38 0.8031
13 B15 0.7237 B2, B39 0.7813 B2, B7, B39 0.7922 B10, B24, B29, B38 0.8025
14 B11 0.7162 B2, B45 0.7812 B2, B7, B44 0.7921 B1, B25, B29, B38 0.8022
15 B25 0.7126 B1, B40 0.7811 B2, B7, B57 0.7921 B13, B30, B38, B60 0.8022
16 B16 0.7110 B1, B43 0.7810 B2, B7, B35 0.7920 B13, B25, B29, B38 0.8020
17 B26 0.7098 B1, B35 0.7809 B2, B7, B41 0.7920 B18, B20, B30, B38 0.8020
18 B19 0.7095 B1, B38 0.7808 B2, B7, B52 0.7918 B13, B25, B26, B38 0.8019
19 B24 0.7073 B2, B40 0.7808 B2, B7, B55 0.7917 B11, B25, B29, B38 0.8019
20 B17 0.7054 B2, B41 0.7808 B2, B4, B6 0.7917 B13, B27, B29, B37 0.8018

Table 5. Regression equations relating surface soil properties to best four‐parameter model. The factor in parentheses
is the spectral index (S = predicted value of soil property, and R = reflectance for indicated band).

Model No. Soil Property Regression Equation R2 RMSE

1 SP (%) S = 78.29 ‐ 425.0*(R4 ‐ 4.136*R33 + 4.000*R36 ‐ 0.601*R59) 0.4859 3.07
2 pH S = 8.353 ‐ 8.130*(R3 ‐ 1.025*R7 +2.137*R13 ‐ 1.643*R26) 0.6164 0.076
3 EC (dS m‐1) S = ‐24.28 ‐ 829.5*(R26 ‐ 0.841*R27 ‐ 0.253*R38 ‐ 0.403*R59) 0.6696 1.96
4 Ca (meq L‐1) S = ‐126.5 ‐ 3663*(R26 ‐ 0.887*R27 ‐ 0.321*R38 ‐ 0.218*R60) 0.6188 9.51
5 Mg (meq L‐1) S = ‐48.18 ‐ 1681*(R26 ‐ 0.870*R27 ‐ 0.304*R38 ‐ 0.219*R60) 0.5820 4.32
6 Na (meq L‐1) S = ‐83.97 ‐ 4190*(R26 ‐ 0.822*R27 ‐ 0.236*R38 ‐ 0.364*R59) 0.6224 9.11
7 Cl (meq L‐1) S = ‐221.1 ‐ 4744*(R26 ‐ 0.889*R27 ‐ 0.267*R37 ‐ 0.445*R59) 0.7376 12.24
8 HCO3 (meq L‐1) S = 5.630 ‐ 87.47*(R27 ‐ 1.697*R30 + 2.587*R48 ‐ 1.938*R53) 0.5668 0.345
9 C (%) S = 1.377 + 15.77*(R32 ‐ 2.156*R44 ‐ 2.741*R47 + 3.986*R50) 0.2692 0.081

10 P (mg kg‐1) S = 96.24 ‐ 1107*(R27 ‐ 1.681*R30 + 5.017*R50 ‐ 4.333*R53) 0.6975 4.32
11 K (mg kg‐1) S = 904.6 + 6390*(R14 ‐ 2.711*R27 + 2.839*R30 ‐ 1.899*R47) 0.6391 45.03
12 OM (%) S = 2.083 + 18.17*(R26 ‐ 0.600*R27 ‐ 3.261*R47 + 2.521*R50) 0.4857 0.083
13 Sand (%) S = ‐92.6 + 1530*(R18 ‐ 1.152*R30 + 1.537*R38 ‐ 0.940*R40) 0.8063 4.83
14 Silt (%) S = 82.59 ‐ 573.0*(R2 ‐ 0.645*R6 ‐ 1.570*R39 + 1.860*R45) 0.7518 3.34
15 Clay (%) S = 90.25 ‐ 698.7*(R13 ‐ 0.796*R29 + 1.905*R36 ‐ 1.730*R44) 0.6708 3.23

Table 6. Spectral indices that are similar for five surface soil properties (R = reflectance for indicated band).
Model No. Rank Soil Property Spectral Index

16 2 EC (dS m‐1) R26 ‐ 0.847*R27 ‐ 0.253*R37 ‐ 0.392*R59
17 2 Ca (meq L‐1) R26 ‐ 0.866*R27 ‐ 0.233*R37 ‐ 0.403*R59
18 3 Mg (meq L‐1) R26 ‐ 0.842*R27 ‐ 0.220*R37 ‐ 0.405*R59
19 2 Na (meq L‐1) R26 ‐ 0.829*R27 ‐ 0.232*R37 ‐ 0.355*R59
7 1 Cl (meq L‐1) R26 ‐ 0.889*R27 ‐ 0.267*R37 ‐ 0.445*R59

Average R26 ‐ 0.855*R27 ‐ 0.241*R37 ‐ 0.400*R59

bands did little to increase the R2 value. By comparison, us‐
ing narrow bands produced an R2 of 0.81. Silt was the next
easiest to detect with the broad bands, just as it was with the
narrow bands, but again the R2 was considerably lower with
the broad bands. By comparing table 7 to table 2, one can see
that for every soil property, the best four‐parameter correla‐
tion was consistently better with the narrow bands than with
these broad bands.

Surface sand was chosen to be used in a test and validation
procedure. One out of every ten rows of data in the master
processing file was randomly selected; they were then re‐
moved and placed in a separate validation file. The remaining

data were put in a test file. MLR for a three‐parameter model
was run on the test file, producing a best fit with bands B2,
B4, and B7. The results are shown in figure 7, with R2 =
0.7942 and RMSE = 4.94%. The regression equation for the
test data shown in figure 7 is also shown in figure 8 along with
the data from the validation file. The validation data fit the
test equation quite nicely, with RMSE = 5.07%.

The in‐field distribution of sand in the surface soil for field
6‐4 is shown in figure 9. The equation in model 13 (table 5)
was used in an Access query to calculate the level of sand at
every pixel. With this image loaded into ArcView, the level
of sand at any point and the average for any area can easily
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Figure 1. Scatter diagram and regression equation for percent surface
sand as a function of the spectral index for model 13; data for fields 6‐4
and 4‐1 from flight of 22 May 2002.

Figure 2. Scatter diagram and regression equation for percent surface silt
as a function of the spectral index for model 14; data for fields 6‐4 and 4‐1
from flight of 22 May 2002.

Figure 3. Scatter diagram and regression equation for surface chlorides
as a function of the spectral index for model 7; data for fields 6‐4 and 4‐1
from flight of 22 May 2002.

be found. The scatter around the regression line in figure 1 in‐
dicates the degree of accuracy for these values. In most cases,
the predicted value shown in the image in figure 9 will have
an error of less than 4.8% sand (the RMSE), and the error will
seldom exceed 9.6% sand (twice the RMSE). This type of
image becomes one of the basic maps needed in many preci‐
sion agriculture applications.

Figure 4. Scatter diagram and regression equation for surface EC as a
function of the spectral index for model 3; data for fields 6‐4 and 4‐1 from
flight of 22 May 2002.

Figure 5. Spectral response patterns for high and low potassium levels.

Figure 6. Spectral response patterns for high and low sand levels.

The use of narrow bands with a spectral resolution of
10�nm may have been a key element in this study. Thomasson
et al. (2001) suggested that perhaps stronger correlations
could be obtained with a spectral resolution less than 50 nm.
Although some specific broad bands might work well, the
ones selected for blue, green, red, and NIR in this study did
not correlate as well as narrow bands to the soil properties. In
comparing our results to some similar work, i.e., for those
studies using remote sensing flights over bare soil as in Selige
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Table 7. Bands with the highest R2 values for surface properties of soil, using the broad bands blue, green, red, and
NIR. Band width for blue: 468‐516 nm; for green: 535‐565 nm; for red: 652‐690 nm; and for NIR: 826‐875 nm.

Soil
Property

One Parameter Two Parameters Three Parameters Four Parameters

Band R2 Bands R2 Bands R2 Bands R2

SP (%) NIR 0.3549 Red, NIR 0.3708 Green, red, NIR 0.3726 Blue, green, red, NIR 0.3845
pH green 0.5242 Blue, NIR 0.557 Blue, green. NIR 0.5609 Blue, green, red, NIR 0.5619

EC (dS m‐1) green 0.4544 Blue, NIR 0.4611 Blue, red, NIR 0.4631 Blue, green, red, NIR 0.4662
Ca (meq L‐1) green 0.4265 Blue, NIR 0.4361 Blue, red, NIR 0.4371 Blue, green, red, NIR 0.4406
Mg (meq L‐1) blue 0.3688 Blue, NIR 0.376 Blue, green, NIR 0.378 Blue, green, red, NIR 0.3842
Na (meq L‐1) green 0.333 Blue, NIR 0.3355 Blue, red, NIR 0.3366 Blue, green, red, NIR 0.3369
Cl (meq L‐1) green 0.5984 Blue, NIR 0.6065 Blue, red, NIR 0.6075 Blue, green, red, NIR 0.6081

HCO3 (meq L‐1) NIR 0.2956 Green, red 0.3404 Blue, green, red 0.4781 Blue, green, red, NIR 0.4789
C (%) red 0.0162 Blue, red 0.1088 Blue, green, red 0.1089 Blue, green, red, NIR 0.1089

P (mg kg‐1) NIR 0.4378 Green, red 0.4657 Blue, green, red 0.6334 Blue, green, red, NIR 0.6402
K (mg kg‐1) NIR 0.3212 Blue, green 0.3714 Blue, green, red 0.4531 Blue, green, red, NIR 0.4539

OM (%) NIR 0.2228 Blue, green 0.3054 Blue, green, red 0.3111 Blue, green, red, NIR 0.3189
Sand (%) NIR 0.7401 Red, NIR 0.7724 Blue, red, NIR 0.7728 Blue, green, red, NIR 0.7748
Silt (%) NIR 0.6787 Green, NIR 0.6836 Blue, green NIR 0.6939 Blue, green, red, NIR 0.711

Clay (%) red 0.5559 Red, NIR 0.5782 Green, red, NIR 0.5872 Blue, green, red, NIR 0.6659

Figure 7. Scatter diagram and best‐fitting three‐parameter regression
equation for test data, using surface sand; data for fields 6‐4 and 4‐1 from
flight of 22 May 2002.

Figure 8. Scatter diagram for validation data, with regression line from
test data; data for surface sand in fields 6‐4 and 4‐1 from flight of 22 May
2002.

Figure 9. High‐definition image of field 6‐4 on 22 May 2002, showing the distribution of surface sand with a spatial resolution of 1.2 m. Equation for
each pixel is from model 13.
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et al. (2006) and Hong et al. (2002), we could find none that re‐
gressed every possible combination of all the HSI bands avail‐
able using MLR. Likewise, none grid‐sampled the soil at two
different depths, and none looked at more than seven properties.
Goel et al. (2003), looking at several biophysical properties of
corn, used multiple linear regression for narrow band selection
and presented the resulting regression equations, as we have
done here. They were concerned that collinearity or codepend‐
ence of the many band reflectances could be a problem, as sug‐
gested by Longley (1967) and Beaton et al. (1976). However,
with the goal of prediction rather than explanation, collinearity
is less of a problem (Yu, 2000). CoPlot has a diagnostic tool that
automatically checks for collinearity using a procedure from
Maindonald (1984). Band selection using multiple linear re‐
gression of narrow bands was also used successfully by DeTar
et al. (2006). Multiple linear regression is a simple and straight‐
forward method for obtaining optimum bands, and the resulting
spectral indices worked well for several soil properties. The ex‐
act model for this and other fields depends greatly on the type
of tillage operation applied just prior to the flight. According to
Jensen (2000), some soil properties may be measured remotely
under ideal conditions, and it is possible for remotely sensed
data to be of value, and in some cases essential, to accurate soil
mapping.

CONCLUSIONS
The primary result of this study is that airborne remote

sensing with a hyperspectral camera over nearly bare soil can
measure the within‐field distribution of several soil proper‐
ties with a spatial resolution of 1.2 m. Using multiple linear
regression, every possible combination of 60 narrow bands
was regressed to find the very best one‐, two‐, three‐, and
four‐parameter models for 15 different soil properties. The
percent sand in the surface samples was estimated with a rea‐
sonable degree of accuracy with R2 = 0.806 for a four‐
parameter model; the best combination of wavelengths was
627, 647, 724, and 840 nm. For the silt, clay, EC, chlorides,
and phosphorus, the results were somewhat less satisfactory
with a range of 0.66 < R2 < 0.76. The least detectable of the
surface soil properties was carbon with R2 = 0.27. Organic
matter and saturation percentage had R2 < 0.49. The other six
properties (pH, Ca, Mg, Na, HCO3, and K) were all in the in‐
termediate range. For samples taken with cores from the 0 to
300 mm depth, the textural properties were also estimated ac‐
curately with R2 > 0.71; however, the non‐textural properties
of these subsurface soils had a much poorer correlation to re‐
flectance data than did the surface soils. Regression equa‐
tions are presented for the best models for each soil property
so that values can be calculated at every pixel on the image
map. New spectral indices were developed; one index (I =
R763 - 0.85*R753 - 0.24*R657 - 0.40*R443) was found to work
well with five of the soil properties (EC, Ca, Mg, Na, and Cl),
indicating some commonality in the manner in which they af‐
fected the reflectance from the soil surface, possibly due to
a salinity effect. Using combinations of selected narrow
bands produced higher R2 values than did combinations of
the broad bands of blue, green, red, and NIR. The information
presented here should be useful in selecting filters for multi‐
spectral cameras and for selecting wavebands for HSI camer‐
as when attempting to map soil properties with remote
sensing.
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